alt FUW
logo UW
other language
webmail
search
menu
Faculty of Physics University of Warsaw > Events > Seminars > The Algebra & Geometry of Modern Physics

The Algebra & Geometry of Modern Physics

2013/2014 | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 | Seminar homepage

RSS

2018-03-08 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Mariusz Tobolski (IMPAN)

Interacting fields and Feynman diagrams, part II

Interacting fields and Feynman diagrams, part II
2018-03-01 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Mariusz Tobolski (IMPAN)

Interacting fields and Feynman diagrams, part I

Interacting fields and Feynman diagrams, part I.
2018-01-25 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Robert Śmiech (MIMUW)

Quantum field theory: free fields, part III

Quantum field theory: free fields, part III
2018-01-18 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Robert Śmiech (MIMUW)

Quantum field theory: free fields, part II

Quantum field theory: free fields, part II
2018-01-11 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Robert Śmiech (MIMUW)

Quantum field theory: free fields, part I

Quantum field theory:free fields
2017-12-21 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Krzysztof Jodłowski (FUW)

Feynman approach to Quantum Mechanics and Simple Harmonic Oscilator, part III

I will introduce Feynman path integral approach to Quantum Mechanics, focusing on a few simple examples: free particle, a particle coupled to magnetic field, and a general lagrangian quadratic in positions and velocities. Feynman heuristic idea will be presented as well as rigorous (but with imaginary time evolution) approach using Feynman-Kac formula. A partition function for the Simple Harmonic Oscilator will be computed using the path integral.
2017-12-14 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Krzysztof Jodłowski (FUW)

Feynman approach to Quantum Mechanics and Simple Harmonic Oscilator, part II

I will introduce Feynman path integral approach to Quantum Mechanics, focusing on a few simple examples: free particle, a particle coupled to magnetic field, and a general lagrangian quadratic in positions and velocities. Feynman heuristic idea will be presented as well as rigorous (but with imaginary time evolution) approach using Feynman-Kac formula. A partition function for the Simple Harmonic Oscilator will be computed using the path integral.
2017-12-07 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
Krzysztof Jodłowski (FUW)

Feynman approach to Quantum Mechanics and Simple Harmonic Oscilator, part I

I will introduce Feynman path integral approach to Quantum Mechanics, focusing on a few simple examples: free particle, a particle coupled to magnetic field, and a general lagrangian quadratic in positions and velocities. Feynman heuristic idea will be presented as well as rigorous (but with imaginary time evolution) approach using Feynman-Kac formula. A partition function for the Simple Harmonic Oscilator will be computed using the path integral.
2017-11-30 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
T. Pelka (MIMUW)

Quantum mechanics

Quantum mechanics
2017-11-16 (Thursday)
room 2.23, Pasteura 5 at 15:15  Calendar icon
T. Pelka (MIMUW)

Quantum mechanics

Quantum mechanics
Desktop version Disclainers