alt FUW
logo UW
other language
webmail
search
menu

Press releases

Drip by drip: The hidden blueprint for stalagmite growth

2025-10-18

Deep inside caves, water dripping from the ceiling creates one of nature’s most iconic formations: stalagmites. These pillars of calcite, ranging from centimeters to many meters in height, rise from the cave floor as drip after drip of mineral-rich water deposits a tiny layer of stone. Beyond their beauty - echoed in fanciful nicknames like the “Minaret” or the “Wedding Cake” – stalagmites are also natural archives, recording ancient climatic changes in their layered growth, much like tree rings. But what determines the shape of a stalagmite? Why do some grow into slender cones, others into massive columns, and still others into curious flat-topped forms? A new study by researchers from Poland, the USA, and Slovenia, published in the Proceedings of the National Academy of Sciences (PNAS), provides the first complete mathematical description of stalagmite shapes.| More

Quantum radio antenna

2025-10-16

A team from the Faculty of Physics and the Centre for Quantum Optical Technologies, Centre of New Technologies at the University of Warsaw has developed a new type of all-optical radio receiver based on the fundamental properties of Rydberg atoms. The new type of receiver is not only extremely sensitive, but also provides internal calibration, and the antenna itself is powered only by laser light. The results of the work, in which Sebastian Borówka, Mateusz Mazelanik, Wojciech Wasilewski and Michał Parniak participated, were published in the prestigious journal Nature Communications. They open a new chapter in the technological implementation of quantum sensors.| More

Amplifying collective light emission with atomic interactions

2025-10-10

A team of physicists from the Faculty of Physics at the University of Warsaw, the Centre for New Technologies at the University of Warsaw (Poland), and Emory University (Atlanta, USA) analysed how atoms’ mutual interactions change the way they collectively interact with light. In a paper just published in Physical Review Letters, the researchers extend established models of this phenomenon. By showing that direct atom-atom interactions can strengthen a collective burst of light known as superradiance, the team points to new opportunities for quantum technologies.| More

Next-Generation Quantum Communication

2025-10-02

In the era of instant data exchange and growing risks of cyberattacks, scientists are seeking secure methods of transmitting information. One promising solution is quantum cryptography – a quantum technology that uses single photons to establish encryption keys. A team from the Faculty of Physics at the University of Warsaw has developed and tested in urban infrastructure a novel system for quantum key distribution (QKD). The system employs so-called high-dimensional encoding. The proposed setup is simpler to build and scale than existing solutions, while being based on a phenomenon known to physicists for nearly two centuries – the Talbot effect. The research results have been published in prestigious journals: “Optica Quantum”, “Optica”, and “Physical Review Applied”. | More

Gravitino, a new candidate for Dark Matter

2025-09-19

Dark Matter remains one of the biggest mysteries in fundamental physics. Many theoretical proposals (axions, WIMPs) and 40 years of extensive experimental search failed to provide any explanation of the nature of Dark Matter. Several years ago, in a theory unifying particle physics and gravity, new, radically different Dark Matter candidates were proposed, superheavy charged gravitinos. Very recent paper in Physical Review Research by scientists from the University of Warsaw and Max Planck Institute for Gravitational Physics, shows how new underground detectors, in particular JUNO detector starting soon to take data, even though designed for neutrino physics, are also extremely well suited to eventually detect charged Dark Matter gravitinos. The simulations combining two fields, elementary particle physics and very advanced quantum chemistry, show that the gravitino signal in the detector should be unique and unambiguous. | More

Making the invisible visible: a new way to boost light emission at the nanoscale

2025-08-29

Light still holds surprises – as demonstrated by researchers from the Ultrafast Phenomena Lab at the Faculty of Physics, University of Warsaw, in collaboration with the Institute of Low Temperature and Structure Research, Polish Academy of Sciences, who have discovered a new enhancement effect in the emission of upconverting nanoparticles. They demonstrated that simultaneous excitation of these nanostructures with two near-infrared beams of laser light leads to a significant increase in emission intensity. Under carefully chosen conditions, visible emission emerges only when both beams are applied together, even though neither beam alone produces any emission at all. This discovery paves the way for visualizing infrared radiation beyond the sensitivity range of standard detectors. The findings, potentially applicable in microscopy and photonic technologies, have been published in the prestigious journal “ACS Nano”. | More

Polish physicists co-discover “lonely” spinons - a new step towards quantum technologies

2025-07-07

Researchers from the Faculty of Physics at the University of Warsaw and the University of British Columbia have described how a so-called lone spinon - an exotic quantum excitation that is a single unpaired spin - can arise in magnetic models. The discovery deepens our understanding of the nature of magnetism and could have implications for the development of future technologies such as quantum computers and new magnetic materials. The findings were published in the renowned journal “Physical Review Letters.”. | More

New photonic platform developed by Polish research team

2025-06-25

A team of researchers from the Faculty of Physics at the University of Warsaw, the Military University of Technology, and the Institut Pascal at Université Clermont Auvergne has developed a novel method for using cholesteric liquid crystals in optical microcavities. The platform created by the researchers enables the formation and dynamic tuning of photonic crystals with integrated spin-orbit coupling (SOC) and controlled laser emission. The results of this groundbreaking research have been published in the renowned journal “Laser & Photonics Reviews”. | More

A drop hollows out the stone... and records the climate's history

2025-05-29

Water reshapes the Earth through slow, powerful erosion, carving intricate landscapes like caves and pinnacles in soluble rocks such as limestone. An international team from the Faculty of Physics at the University of Warsaw, the University of Florida, and the Institute of Earth Sciences in Orléans has discovered that vertical channels, known as karstic solution pipes, preserve a record of Earth’s climatic history. Their study, published in Physical Review Letters, reveals that these pipes evolve with time into an invariant shape, a fixed, ideal form that remains unchanged as the pipes deepen, encoding ancient rainfall patterns. | More

Quantum control of collisions beyond ultralow temperatures

2025-03-10

At ultracold temperatures, interatomic collisions are relatively simple, and their outcome can be controlled using a magnetic field. However, research by scientists led by Prof. Michal Tomza from the Faculty of Physics of the University of Warsaw and prof. Roee Ozeri from the Weizmann Institute of Science shows that this is also possible at higher temperatures. The scientists published their observations in the scientific journal “Science Advances”. | More

Desktop version Disclainers