alt FUW
logo UW
other language
webmail
search
menu
Faculty of Physics University of Warsaw > Events > Seminars > Leopold Infeld Colloquium (till 2017/18)
2011-06-06 (Monday)
Nowa A(425), Hoża 69 at 16:30  Calendar icon
prof. dr hab. Andrzej Kajetan Wroblewski (Wydział Fizyki UW)

Wielkość Marii Skłodowskiej-Curie

Zostaną omówione początkowe lata badań promieniotwórczości. Becquerel odkrył to zjawisko przypadkiem w 1896 r., ale popełnił kilkaistotnych błędów w interpretacji swych eksperymentów, co spowodowało, że promieniowanie uranu uznano za mało ciekawe i przestano się tym zajmować. Także sam Becquerel zajął się innym działem fizyki i być może nie dostałby Nagrody Nobla, gdyby nie przełomowe badania i odkrycia Marii Skłodowskiej-Curie, która ponownie odkryła promieniotwórczość i zapoczątkowała burzliwy rozwój tej dziedziny, z której wkrótce wyrosła fizyka jądrowa. Maria Skłodowska-Curie widziała to, czego nie dostrzegali nieliczni badacze, którzy równocześnie prowadzili analogiczne badania w 1898 r. Zostaną też podane przykłady mitów na temat Marii Skłodowskiej-Curie.
2011-05-26 (Thursday)
Nowa A(425), Hoża 69 at 15:30  Calendar icon
Prof. Cheuk-Yin Wong (Oak Ridge National Laboratory)

Stability of Matter-Antimatter Molecules

The study of matter-antimatter molecules has a long history, starting with the pioneering work of John A. Wheeler in 1946. Molecular states appears not only in atomic and molecular physics, but also in sub-atomic physics. We shall review the evidence for molecular states in subatomic systems and discuss the recently observed X(3872) as a heavy-quark meson molecule [1]. Because a large number of particles and antiparticles are produced in high-energy (e+)-(e-) annihilations and nuclear collisions, we examine further the stability of matter-antimatter molecules with constituents (m1+, m2-, m2bar+, m1bar-) under their mutual electromagnetic interactions [2]. We find that matter-antimatter molecules possess bound states if their constituent mass ratio m1/m2 is greater than about 4. This stability condition suggests that the binding of matter-antimatter molecules is a rather common phenomenon.

[1] Cheuk-Yin Wong, Phys. Rev. C69, 055202 (2004) [arXiv:hep-ph/0311088].
[2] Cheuk-Yin Wong and Teck-Ghee Lee, [arXiv:1103.5774] (2011).

2011-05-19 (Thursday)
Nowa A(425), Hoża 69 at 15:30  Calendar icon
Prof. dr hab. Włodzimierz Jaskólski (Instytut Fizyki Uniwersytetu Mikołaja Kopernika, Toruń)

Finding edge-states of graphene nanoribbons without any calculations

I will present a general prescription, which allows to predict, without performing any calculations, the existence of edge states and zero-energy flat bands in graphene nanoribbons (GNR) with edges of arbitrary shape. First, one need to define the so-called minimal edges, i.e., those having minimum number of edge nodes and dangling bonds per translation period. For GNRs with such edges, the spectrum of the zero-energy edge bands is obtained by folding n-times the spectrum of the simple zigzag GNR, where n is uniquely determined by the projection of the edge translation vector into the zigzag direction. By adding extra nodes to minimal edges, arbitrary modified edges can be obtained. The edge bands of GNRs with modified edges can be found by applying hybridization rules of the extra atoms with the ones belonging to the original edge. The entire prescription reduces to simple diagrams, which additionally predict the localization and degeneracy of the zero-energy bands at one of the graphene sublattices. This is confirmed by the tight-binding and first-principle calculations. The presented rules also allows us to qualitatively predict the existence of E0 bands appearing in the energy gap of certain nanoribbons.
Desktop version Disclainers