Photonics Seminar
2010/2011 | 2011/2012 | 2012/2013 | 2013/2014 | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 | 2019/2020 | 2020/2021 | 2021/2022 | 2022/2023 | 2023/2024 | 2024/2025 | Seminar homepage
2022-06-02 (Thursday)
mgr Rafał Stojek (IGF FUW)
Obrazowanie jednopikselowe w wysokiej rozdzielczości
2022-05-26 (Thursday)
mgr Andrzej Janaszek (IGF UW)
Plasmon-enhanced infrared photodetector
2022-05-12 (Thursday)
mgr Ali Golestani Shishvan (Zakład Optyki Instytut Fizyki Doświadczalnej, Wydział Fizyki, Uniwersytet Warszawski)
Inverse Fourier spectrometer for measuring the temporal envelope of single photon pulses
2022-04-21 (Thursday)
dr hab. Renata Solarska (Laboratorium Molekularnych Innowacji Słonecznych, CeNT)
Photo-induced charge carrier dynamics in semiconducting systems
2022-04-07 (Thursday)
dr Adam Filipkowski (ZF IGF FUW)
Quantum-effect-based nanosensing and imaging: novel glass-diamond photonic approach for the next generation biodiagnostic applications
2022-03-31 (Thursday)
dr Linh Trinh (grupa dr hab. Renaty Solarskiej CeNT - Laboratorium Molekularnych Innowacji Słonecznych)
Copper-zinc oxides for PEC hydrogen production
Although hybrid CuO:Zn has a small bandgap energy similar to that of pristine CuO and a relatively high photocurrent, it suffers from photocorrosion. Herein, we report the electrodeposition of CuO:Zn nanostructures in which the photoelectrochemical properties are governed by the twisting of the coordination sphere or the Fermi level pinning of Zn ions. We extended the absorption range to the visible region while doubling its apparent photocurrent compared to that of CuO. The implementation of Zn ions enlarged the space-charge region, thus triggering electron availability for the photolysis of water, which is unusual for p-type semiconductors. Moreover, the excellent crystallinity, high surface area, and adhesion to the FTO (Fluorine-doped Tin Oxide) glass remarkably improved the photocatalytic activity of the CuO:Zn thin film with a cathodic photocurrent of -4 mA/cm2 and a quantum efficiency of 35%, making it a promising candidate for hydrogen production.
2022-03-17 (Thursday)
dr Bartosz Janaszek (Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej)
Over the last two decades, a great deal of attention has been devoted to optical metamaterials providing new means for controlling wave propagation which are not achievable with conventional media [1–3]. A special class of uniaxially anisotropic metamaterials, called hyperbolic metamaterials (HMMs), have emerged as a particularly prospective media, due to their relatively high technological feasibility as well as wide applicability, including diffractionless lensing [4], biosensing [5–8], optical signal buffering/storing[9], efficient spectral and spatial filtering [11], as well as many others [12,13]. Our research is focused on further reduction of restrictions related to controlling electromagnetic response of metamaterials via two distinctively different mechanism, namely active tunability by means of external stimulus and controlled nonlocal response by means of appropriate geometry structurization. Our key findings related to tunable HHM structures have shown that planar hyperbolic structures may be employed to act as a tunable edge- and narrowband filters of nanoscaled dimensions operating in mid-infrared spectral range, suitable for free space communications or thermal signatures detection. Moreover, we have demonstrated that unique properties of HMM structures may be also controlled and utilized in integrated waveguide systems, which allows to obtain full control of propagation properties in a single waveguide, including light stopping and power flow reversing, as well as fully tunable intermodal coupling in multi-waveguide systems. The scope of our research in the field of tunable active HMMs has also covered controlling gain and absorption in bulk HMM structures as well as lasing phenomena in DFB lasers based on hyperbolic media. In particular, we have demonstrated possibility of obtaining a single-frequency generation with high side-mode suppression and controllable wavelength of operation. Another area of our research is related to the role of spatial dispersion in shaping properties of planar hyperbolic metamaterials. According to our research, nonlocality (spatial dispersion) may serve as a new degree of freedom in controlling optical properties of HMM structures. Within our work we have demonstrated that structurization of a HMM’s unit cell may lead to strong nonlocal response, which may be employed to obtain a number of new optical effects, that are not possible when spatial dispersion is negligible, such as optical isolation, without use of external magnetic field and nonlinear effects, or orthogonally polarized beam generation at different frequencies in a single laser structure. The scope of our analysis has also included the role on nonlocality in shaping optical properties of optical filters, waveguides and lasers based on hyperbolic metamaterials. We believe that both presented our mechanisms paves strong foundations for hyperbolic media as photonic platform for versatile optical applications.
References:
1. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon 1(1), 41–48 (2007).
2. S. A. Cummer, J. Christensen, and A. Alù, "Controlling sound with acoustic metamaterials," Nat Rev Mater 1(3), 16001 (2016).
3. S. Zhu and X. Zhang, "Metamaterials: artificial materials beyond nature," National Science Review 5(2), 131–131 (2018).
4. J. Sun and N. M. Litchinitser, "Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens," ACS Nano 12(1), 542–548 (2018).
5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, "Extreme sensitivity biosensing platform based on hyperbolic metamaterials," Nature Materials 15(6), 621–627 (2016).
6. M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, and A. Mir, "Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range," Appl. Opt. 57(31), 9447 (2018).
7. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature Mater 8(11), 867–871 (2009).
8. E. Shkondin, T. Repän, M. E. Aryaee Panah, A. V. Lavrinenko, and O. Takayama, "High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing," ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
9. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, "Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands," Optics Express 25(7), 7263 (2017).
10. M. Kieliszczyk, B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, "Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials," Applied Optics 57(5), 1182 (2018).
11. A. Ghoshroy, W. Adams, X. Zhang, and D. Ö. Güney, "Hyperbolic Metamaterial as a Tunable Near-Field Spatial Filter to Implement Active Plasmon-Injection Loss Compensation," Phys. Rev. Applied 10(2), 024018 (2018).
12. O. Takayama and A. V. Lavrinenko, "Optics with hyperbolic materials [Invited]," J. Opt. Soc. Am. B 36(8), F38 (2019).
13. Z. Guo, H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics 127(7), 071101 (2020).
Kontrola dyspersji w metamateriałach hiperbolicznych
Controlling optical properties of hyperbolic metamaterials
W ciągu ostatnich dwóch dekad wiele uwagi poświęcono o tzw. metamateriałom optycznym, które pozwalają na uzyskanie nowych metod kontroli propagacji fal, nieosiągalnych w ośrodkach „konwencjonalnych” [1–3]. Pośród tego rodzauje ośrodków, specjalna klasa jednoosiowo anizotropowych metamateriałów, zwanych metamateriałami hiperbolicznymi (HMM), jest szczególnie obiecująca ze względu na ich stosunkowo wysoką wykonalność technologiczną oraz szerokie zastosowania, w tym soczewkowanie bezdyfrakcyjne [4], możliwość zastosowania czujnikach bilogicznych [5–8], zatrzymywanie i spowalnianie sygnału optycznego [9], wydajne filtrowanie widmowe i przestrzenne [11] oraz wiele innych [12,13]. Nasze badania koncentrują się na możliwości kontroli odpowiedzi elektromagnetycznej metamateriałów za pomocą dwóch mechanizmów, tj. aktywnego przestrajania za pomocą bodźca zewnętrznego oraz kontroli odpowiedzi nielokalnej za pomocą odpowiedniej strukturyzacji geometrii ośrodka.Nasze kluczowe osiągnięcia związane z objętościowymi strukturami HMM dotyczyły możliwości wykorzystanie planarnych metamateriałów hiperbolicznych jako ultracienkich, przestrajalnych filtrów krawędziowych i wąskopasmowych, działających w zakresie średniej podczerwieni i mogących znaleźć zastosowanie w komunikacji optycznej w wolnej przestrzeni oraz w wykrywaniu sygnatur termicznych. Ponadto, w ramach przeprowadzonych prac, wykazaliśmy, że unikalne właściwości struktur HMM mogą być również kontrolowane i wykorzystywane w zintegrowanych układach falowodowych, co pozwala na uzyskanie pełnej kontroli właściwości propagacyjnych w pojedynczym falowodzie, w tym zatrzymywania światła i odwracania przepływu mocy, a także w uzyskaniu przestrajalnego sprzężenia międzymodowego w systemach wielofalowodowych. Zakres naszych badań w obszarze aktywnych przestrajalnych struktur HMM obejmował również kontrolę wzmocnienia i absorpcji w objętościowych oraz zjawiska laserowe w laserach DFB opartych na ośrodkach hiperbolicznych. W szczególności, wykazaliśmy możliwość uzyskania generacji jednoczęstotliwościowej z wysokim tłumieniem prążków bocznym i kontrolowaną długością fali generacji. Kolejnym obszarem naszych badań było zbadanie roli dyspersji przestrzennej w kształtowaniu właściwości planarnych metamateriałów hiperbolicznych. Zgodnie z otrzymanymi wynikami, nielokalność (dyspersja przestrzenna) może służyć jako nowy stopień swobody w kontrolowaniu właściwości optycznych struktur HMM. W naszej pracy wykazaliśmy, że strukturyzacja komórki elementarnej HMM może prowadzić do silnej odpowiedzi nielokalnej, co może być wykorzystane do uzyskania szeregu nowych efektów optycznych, które nie są możliwe do zaobserwowania przy znikomej dyspersji przestrzennej, takich jak izolacja optyczna, bez użycia zewnętrznego pola magnetycznego i efektów nieliniowych lub generacja wiązek o ortogonalnych polaryzacjach i różnych częstotliwościach w pojedynczej strukturze laserowej. Zakres naszej analizy obejmował również rolę nielokalności w kształtowaniu właściwości optycznych filtrów optycznych, falowodów i laserów opartych na metamateriałach hiperbolicznych. Wierzymy, że oba zaprezentowane przez nas mechanizmy dają mocne podstawy dla do stworzenia platformy fotonicznej do wszechstronnych zastosowań optycznych bazującej na metamateriałach hiperbolicznych.
Referencje:
1. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon 1(1), 41–48 (2007).
2. S. A. Cummer, J. Christensen, and A. Alù, "Controlling sound with acoustic metamaterials," Nat Rev Mater 1(3), 16001 (2016).
3. S. Zhu and X. Zhang, "Metamaterials: artificial materials beyond nature," National Science Review 5(2), 131–131 (2018).
4. J. Sun and N. M. Litchinitser, "Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens," ACS Nano 12(1), 542–548 (2018).
5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, "Extreme sensitivity biosensing platform based on hyperbolic metamaterials," Nature Materials 15(6), 621–627 (2016).
6. M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, and A. Mir, "Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range," Appl. Opt. 57(31), 9447 (2018).
7. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature Mater 8(11), 867–871 (2009).
8. E. Shkondin, T. Repän, M. E. Aryaee Panah, A. V. Lavrinenko, and O. Takayama, "High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing," ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
9. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, "Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands," Optics Express 25(7), 7263 (2017).
10. M. Kieliszczyk, B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, "Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials," Applied Optics 57(5), 1182 (2018).
11. A. Ghoshroy, W. Adams, X. Zhang, and D. Ö. Güney, "Hyperbolic Metamaterial as a Tunable Near-Field Spatial Filter to Implement Active Plasmon-Injection Loss Compensation," Phys. Rev. Applied 10(2), 024018 (2018).
12. O. Takayama and A. V. Lavrinenko, "Optics with hyperbolic materials [Invited]," J. Opt. Soc. Am. B 36(8), F38 (2019).
13. Z. Guo, H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics 127(7), 071101 (2020).
Referencje:
1. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon 1(1), 41–48 (2007).
2. S. A. Cummer, J. Christensen, and A. Alù, "Controlling sound with acoustic metamaterials," Nat Rev Mater 1(3), 16001 (2016).
3. S. Zhu and X. Zhang, "Metamaterials: artificial materials beyond nature," National Science Review 5(2), 131–131 (2018).
4. J. Sun and N. M. Litchinitser, "Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens," ACS Nano 12(1), 542–548 (2018).
5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, "Extreme sensitivity biosensing platform based on hyperbolic metamaterials," Nature Materials 15(6), 621–627 (2016).
6. M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, and A. Mir, "Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range," Appl. Opt. 57(31), 9447 (2018).
7. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature Mater 8(11), 867–871 (2009).
8. E. Shkondin, T. Repän, M. E. Aryaee Panah, A. V. Lavrinenko, and O. Takayama, "High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing," ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
9. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, "Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands," Optics Express 25(7), 7263 (2017).
10. M. Kieliszczyk, B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, "Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials," Applied Optics 57(5), 1182 (2018).
11. A. Ghoshroy, W. Adams, X. Zhang, and D. Ö. Güney, "Hyperbolic Metamaterial as a Tunable Near-Field Spatial Filter to Implement Active Plasmon-Injection Loss Compensation," Phys. Rev. Applied 10(2), 024018 (2018).
12. O. Takayama and A. V. Lavrinenko, "Optics with hyperbolic materials [Invited]," J. Opt. Soc. Am. B 36(8), F38 (2019).
13. Z. Guo, H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics 127(7), 071101 (2020).
Over the last two decades, a great deal of attention has been devoted to optical metamaterials providing new means for controlling wave propagation which are not achievable with conventional media [1–3]. A special class of uniaxially anisotropic metamaterials, called hyperbolic metamaterials (HMMs), have emerged as a particularly prospective media, due to their relatively high technological feasibility as well as wide applicability, including diffractionless lensing [4], biosensing [5–8], optical signal buffering/storing[9], efficient spectral and spatial filtering [11], as well as many others [12,13]. Our research is focused on further reduction of restrictions related to controlling electromagnetic response of metamaterials via two distinctively different mechanism, namely active tunability by means of external stimulus and controlled nonlocal response by means of appropriate geometry structurization. Our key findings related to tunable HHM structures have shown that planar hyperbolic structures may be employed to act as a tunable edge- and narrowband filters of nanoscaled dimensions operating in mid-infrared spectral range, suitable for free space communications or thermal signatures detection. Moreover, we have demonstrated that unique properties of HMM structures may be also controlled and utilized in integrated waveguide systems, which allows to obtain full control of propagation properties in a single waveguide, including light stopping and power flow reversing, as well as fully tunable intermodal coupling in multi-waveguide systems. The scope of our research in the field of tunable active HMMs has also covered controlling gain and absorption in bulk HMM structures as well as lasing phenomena in DFB lasers based on hyperbolic media. In particular, we have demonstrated possibility of obtaining a single-frequency generation with high side-mode suppression and controllable wavelength of operation. Another area of our research is related to the role of spatial dispersion in shaping properties of planar hyperbolic metamaterials. According to our research, nonlocality (spatial dispersion) may serve as a new degree of freedom in controlling optical properties of HMM structures. Within our work we have demonstrated that structurization of a HMM’s unit cell may lead to strong nonlocal response, which may be employed to obtain a number of new optical effects, that are not possible when spatial dispersion is negligible, such as optical isolation, without use of external magnetic field and nonlinear effects, or orthogonally polarized beam generation at different frequencies in a single laser structure. The scope of our analysis has also included the role on nonlocality in shaping optical properties of optical filters, waveguides and lasers based on hyperbolic metamaterials. We believe that both presented our mechanisms paves strong foundations for hyperbolic media as photonic platform for versatile optical applications.
References:
1. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon 1(1), 41–48 (2007).
2. S. A. Cummer, J. Christensen, and A. Alù, "Controlling sound with acoustic metamaterials," Nat Rev Mater 1(3), 16001 (2016).
3. S. Zhu and X. Zhang, "Metamaterials: artificial materials beyond nature," National Science Review 5(2), 131–131 (2018).
4. J. Sun and N. M. Litchinitser, "Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens," ACS Nano 12(1), 542–548 (2018).
5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, "Extreme sensitivity biosensing platform based on hyperbolic metamaterials," Nature Materials 15(6), 621–627 (2016).
6. M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, and A. Mir, "Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range," Appl. Opt. 57(31), 9447 (2018).
7. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nature Mater 8(11), 867–871 (2009).
8. E. Shkondin, T. Repän, M. E. Aryaee Panah, A. V. Lavrinenko, and O. Takayama, "High Aspect Ratio Plasmonic Nanotrench Structures with Large Active Surface Area for Label-Free Mid-Infrared Molecular Absorption Sensing," ACS Appl. Nano Mater. 1(3), 1212–1218 (2018).
9. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, "Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands," Optics Express 25(7), 7263 (2017).
10. M. Kieliszczyk, B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, "Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials," Applied Optics 57(5), 1182 (2018).
11. A. Ghoshroy, W. Adams, X. Zhang, and D. Ö. Güney, "Hyperbolic Metamaterial as a Tunable Near-Field Spatial Filter to Implement Active Plasmon-Injection Loss Compensation," Phys. Rev. Applied 10(2), 024018 (2018).
12. O. Takayama and A. V. Lavrinenko, "Optics with hyperbolic materials [Invited]," J. Opt. Soc. Am. B 36(8), F38 (2019).
13. Z. Guo, H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics 127(7), 071101 (2020).
2022-03-10 (Thursday)
mgr Edward Arumona (IGF UW)
Micro-Metamaterial Antenna using the PANDA Ring Circuit
sala 1.03
2022-03-03 (Thursday)
dr Radosław Łapkiewicz (Instytut Fizyki Doświadczalnej, Zakład Optyki, FUW)
Single fluorescent emitters in biological samples are probably the most common sources of quantum light. Nevertheless, their quantum optical properties are rarely exploited. I will discuss how fluorescence microscopy can benefit from measurements of quantum correlations. Such measurements allowed counting emitters within a diffraction-limited spot [1] and enhancing the resolution of classical super-resolution methods further beyond the diffraction limit, as in the case of recently introduced Quantum Image Scanning Microscopy (QISM) [2].
We found that the classical analog of QISM relying on classical light correlations offers a higher SNR at short measurement times and is less demanding experimentally. This method, termed Super-resolution optical fluctuation image scanning microscopy (SOFISM) [3], exploits fluorescent emitter blinking as its image contrast. SOFISM offers a robust path to achieve high-resolution images with a slightly modified confocal microscope, using standard fluorescent labels and reasonable acquisition times.
[1] Y. Israel, et al., Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat.Comm. 8, 14786 (2017).
[2] R. Tenne, et al., Super-resolution enhancement by quantum image scanning microscopy, Nat. Phot., 13, 116–122 (2019).
[3] A. Sroda, et al., SOFISM: Super-resolution optical fluctuation image scanning microscopy, SOFISM: Super-resolution optical fluctuation image scanning microscopy, Optica 7, 1308-1316 (2020).
Breaking the diffraction limit by measuring photon correlations
Single fluorescent emitters in biological samples are probably the most common sources of quantum light. Nevertheless, their quantum optical properties are rarely exploited. I will discuss how fluorescence microscopy can benefit from measurements of quantum correlations. Such measurements allowed counting emitters within a diffraction-limited spot [1] and enhancing the resolution of classical super-resolution methods further beyond the diffraction limit, as in the case of recently introduced Quantum Image Scanning Microscopy (QISM) [2].
We found that the classical analog of QISM relying on classical light correlations offers a higher SNR at short measurement times and is less demanding experimentally. This method, termed Super-resolution optical fluctuation image scanning microscopy (SOFISM) [3], exploits fluorescent emitter blinking as its image contrast. SOFISM offers a robust path to achieve high-resolution images with a slightly modified confocal microscope, using standard fluorescent labels and reasonable acquisition times.
[1] Y. Israel, et al., Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat.Comm. 8, 14786 (2017).
[2] R. Tenne, et al., Super-resolution enhancement by quantum image scanning microscopy, Nat. Phot., 13, 116–122 (2019).
[3] A. Sroda, et al., SOFISM: Super-resolution optical fluctuation image scanning microscopy, SOFISM: Super-resolution optical fluctuation image scanning microscopy, Optica 7, 1308-1316 (2020).
We found that the classical analog of QISM relying on classical light correlations offers a higher SNR at short measurement times and is less demanding experimentally. This method, termed Super-resolution optical fluctuation image scanning microscopy (SOFISM) [3], exploits fluorescent emitter blinking as its image contrast. SOFISM offers a robust path to achieve high-resolution images with a slightly modified confocal microscope, using standard fluorescent labels and reasonable acquisition times.
[1] Y. Israel, et al., Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat.Comm. 8, 14786 (2017).
[2] R. Tenne, et al., Super-resolution enhancement by quantum image scanning microscopy, Nat. Phot., 13, 116–122 (2019).
[3] A. Sroda, et al., SOFISM: Super-resolution optical fluctuation image scanning microscopy, SOFISM: Super-resolution optical fluctuation image scanning microscopy, Optica 7, 1308-1316 (2020).
Single fluorescent emitters in biological samples are probably the most common sources of quantum light. Nevertheless, their quantum optical properties are rarely exploited. I will discuss how fluorescence microscopy can benefit from measurements of quantum correlations. Such measurements allowed counting emitters within a diffraction-limited spot [1] and enhancing the resolution of classical super-resolution methods further beyond the diffraction limit, as in the case of recently introduced Quantum Image Scanning Microscopy (QISM) [2].
We found that the classical analog of QISM relying on classical light correlations offers a higher SNR at short measurement times and is less demanding experimentally. This method, termed Super-resolution optical fluctuation image scanning microscopy (SOFISM) [3], exploits fluorescent emitter blinking as its image contrast. SOFISM offers a robust path to achieve high-resolution images with a slightly modified confocal microscope, using standard fluorescent labels and reasonable acquisition times.
[1] Y. Israel, et al., Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat.Comm. 8, 14786 (2017).
[2] R. Tenne, et al., Super-resolution enhancement by quantum image scanning microscopy, Nat. Phot., 13, 116–122 (2019).
[3] A. Sroda, et al., SOFISM: Super-resolution optical fluctuation image scanning microscopy, SOFISM: Super-resolution optical fluctuation image scanning microscopy, Optica 7, 1308-1316 (2020).
2022-01-20 (Thursday)
mgr Wojciech Mech (Zakład Fizyki Ciała Stałego, Instytut Fizyki Doświadczalnej FUW)
Results of organic solar cells measurements with different internal architecture (standard and inverted) for two active layers materials: well-know PTB7-Th:PC70BM and state of the art PBDB-T-2F:BTP-4Cl-12. Every cell configuration was examined by I-V characteristics measurements under solar light simulator (AM 1.5G) for freshly made devices and after long term ageing storage. Additionally optical absorbance measurements was performed for both active layer materials. For inverted architecture 3 different electron transport layers was tested (ZnO and TiOx by spincoating technique and ZnO by ALD technique).
Standard architecture: Glass/ITO/PEDOT:PSS/active_layer/Al
Inverted architecture: Glass/ITO/ZnO or TiOx/active_layer/MoOx/Al
Impact of polymer solar cells architecture (standard and inverted) on efficiency and ageing character
Results of organic solar cells measurements with different internal architecture (standard and inverted) for two active layers materials: well-know PTB7-Th:PC70BM and state of the art PBDB-T-2F:BTP-4Cl-12. Every cell configuration was examined by I-V characteristics measurements under solar light simulator (AM 1.5G) for freshly made devices and after long term ageing storage. Additionally optical absorbance measurements was performed for both active layer materials. For inverted architecture 3 different electron transport layers was tested (ZnO and TiOx by spincoating technique and ZnO by ALD technique).
Standard architecture: Glass/ITO/PEDOT:PSS/active_layer/Al
Inverted architecture: Glass/ITO/ZnO or TiOx/active_layer/MoOx/Al
Standard architecture: Glass/ITO/PEDOT:PSS/active_layer/Al
Inverted architecture: Glass/ITO/ZnO or TiOx/active_layer/MoOx/Al
Results of organic solar cells measurements with different internal architecture (standard and inverted) for two active layers materials: well-know PTB7-Th:PC70BM and state of the art PBDB-T-2F:BTP-4Cl-12. Every cell configuration was examined by I-V characteristics measurements under solar light simulator (AM 1.5G) for freshly made devices and after long term ageing storage. Additionally optical absorbance measurements was performed for both active layer materials. For inverted architecture 3 different electron transport layers was tested (ZnO and TiOx by spincoating technique and ZnO by ALD technique).
Standard architecture: Glass/ITO/PEDOT:PSS/active_layer/Al
Inverted architecture: Glass/ITO/ZnO or TiOx/active_layer/MoOx/Al
2022-01-13 (Thursday)
dr hab. Rafał Kotyński, prof. ucz. (IGF FUW)
Fotonika w obrazach FDTD
2021-12-09 (Thursday)
mgr Aleksandr Ramaniuk (IFT WF UW)
https://us02web.zoom.us/j/83672995176?pwd=WnhMcDlpSndnKzQ4eGtreUV5VmNTZz09
Meeting ID: 836 7299 5176
Passcode: 6r1qM8
Nonlinear coupled systems: from exciton-polariton condensates to nematic liquid crystals
https://us02web.zoom.us/j/83672995176?pwd=WnhMcDlpSndnKzQ4eGtreUV5VmNTZz09
Meeting ID: 836 7299 5176
Passcode: 6r1qM8
Meeting ID: 836 7299 5176
Passcode: 6r1qM8
https://us02web.zoom.us/j/83672995176?pwd=WnhMcDlpSndnKzQ4eGtreUV5VmNTZz09
Meeting ID: 836 7299 5176
Passcode: 6r1qM8
2021-12-02 (Thursday)
dr hab. Piotr Wasylczyk, prof. ucz. (Zakładu Optyki IFD FUW)
"Projekt RAPID - obrazowanie komórek białaczkowych przy pomocy mikroskopii ramanowskiej - podsumowanie dwóch pierwszych lat"
"Projekt RAPID - obrazowanie komórek białaczkowych przy pomocy mikroskopii ramanowskiej - podsumowanie dwóch pierwszych lat"
Opowiem krótko o tym, co udało nam się osiągnąć i jakie są plany na najbliższą przyszłość w projekcie „Platforma do szybkiego, bezznacznikowego obrazowania, identyfikacji i sortowania podtypów komórek białaczkowych”, realizowanym w konsorcjum sześciu grup z Polski, w tym na Wydziale Fizyki UW.
2021-11-25 (Thursday)
dr hab. Michał Wasiak, prof. PŁ (Politechnika Łódzka, Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej, Instytut Fizyki)
https://us02web.zoom.us/j/83872132958?pwd=dDdGM3dxN2hXZnhuQmdiNi9MeHVtQT09
Meeting ID: 838 7213 2958
Passcode: Bf2NWH
Focusing subwavelength grating mirror
https://us02web.zoom.us/j/83872132958?pwd=dDdGM3dxN2hXZnhuQmdiNi9MeHVtQT09
Meeting ID: 838 7213 2958
Passcode: Bf2NWH
Meeting ID: 838 7213 2958
Passcode: Bf2NWH
https://us02web.zoom.us/j/83872132958?pwd=dDdGM3dxN2hXZnhuQmdiNi9MeHVtQT09
Meeting ID: 838 7213 2958
Passcode: Bf2NWH
2021-11-04 (Thursday)
dr Rania Zaier (IGF FUW)
ABSTRACT:
Recently, research in small molecule organic semiconductors have achieved great progress owing to their well-defined structures, easy synthesis and promising optoelectronic properties. Theoretical studies using the Density Functional Theory (DFT) have been developed on small molecules derived from cyclopentadithiophene (CPDT), anthracene and pyridine for using these materials in organic electronic devices such as Organic light-Emitter Diode (OLED), Organic Photovoltaic Solar Cells (OPSC) and nonlinear optical (NLO) applications. This computational investigation can provide a deep understanding of the structure-property relationships of the studied compounds. The effects of electron-withdrawing and electron donor groups on the electronic, optical and charge transfer properties were investigated. The theoretical studies reproduced sufficiently the experimental results with confirm the well methods used for theoretical simulations. The designed molecules have shown their ability to serve as non-linear materials, as luminescent materials for OLEDs based on the electric (I–V) simulations and as donor materials for OSCs based on the Scharber diagram with a PCE that reaches 10 %.
LINK: https://us02web.zoom.us/j/89855677383?pwd=VXlRSmZNQVFnMlRYdTBPZFVrQmswUT09
Meeting ID: 898 5567 7383
Passcode: 90ZjbH
Theoretical and experimental investigation of small molecules for organic electronic applications
ABSTRACT:
Recently, research in small molecule organic semiconductors have achieved great progress owing to their well-defined structures, easy synthesis and promising optoelectronic properties. Theoretical studies using the Density Functional Theory (DFT) have been developed on small molecules derived from cyclopentadithiophene (CPDT), anthracene and pyridine for using these materials in organic electronic devices such as Organic light-Emitter Diode (OLED), Organic Photovoltaic Solar Cells (OPSC) and nonlinear optical (NLO) applications. This computational investigation can provide a deep understanding of the structure-property relationships of the studied compounds. The effects of electron-withdrawing and electron donor groups on the electronic, optical and charge transfer properties were investigated. The theoretical studies reproduced sufficiently the experimental results with confirm the well methods used for theoretical simulations. The designed molecules have shown their ability to serve as non-linear materials, as luminescent materials for OLEDs based on the electric (I–V) simulations and as donor materials for OSCs based on the Scharber diagram with a PCE that reaches 10 %.
LINK: https://us02web.zoom.us/j/89855677383?pwd=VXlRSmZNQVFnMlRYdTBPZFVrQmswUT09
Meeting ID: 898 5567 7383
Passcode: 90ZjbH
Recently, research in small molecule organic semiconductors have achieved great progress owing to their well-defined structures, easy synthesis and promising optoelectronic properties. Theoretical studies using the Density Functional Theory (DFT) have been developed on small molecules derived from cyclopentadithiophene (CPDT), anthracene and pyridine for using these materials in organic electronic devices such as Organic light-Emitter Diode (OLED), Organic Photovoltaic Solar Cells (OPSC) and nonlinear optical (NLO) applications. This computational investigation can provide a deep understanding of the structure-property relationships of the studied compounds. The effects of electron-withdrawing and electron donor groups on the electronic, optical and charge transfer properties were investigated. The theoretical studies reproduced sufficiently the experimental results with confirm the well methods used for theoretical simulations. The designed molecules have shown their ability to serve as non-linear materials, as luminescent materials for OLEDs based on the electric (I–V) simulations and as donor materials for OSCs based on the Scharber diagram with a PCE that reaches 10 %.
LINK: https://us02web.zoom.us/j/89855677383?pwd=VXlRSmZNQVFnMlRYdTBPZFVrQmswUT09
Meeting ID: 898 5567 7383
Passcode: 90ZjbH
ABSTRACT:
Recently, research in small molecule organic semiconductors have achieved great progress owing to their well-defined structures, easy synthesis and promising optoelectronic properties. Theoretical studies using the Density Functional Theory (DFT) have been developed on small molecules derived from cyclopentadithiophene (CPDT), anthracene and pyridine for using these materials in organic electronic devices such as Organic light-Emitter Diode (OLED), Organic Photovoltaic Solar Cells (OPSC) and nonlinear optical (NLO) applications. This computational investigation can provide a deep understanding of the structure-property relationships of the studied compounds. The effects of electron-withdrawing and electron donor groups on the electronic, optical and charge transfer properties were investigated. The theoretical studies reproduced sufficiently the experimental results with confirm the well methods used for theoretical simulations. The designed molecules have shown their ability to serve as non-linear materials, as luminescent materials for OLEDs based on the electric (I–V) simulations and as donor materials for OSCs based on the Scharber diagram with a PCE that reaches 10 %.
LINK: https://us02web.zoom.us/j/89855677383?pwd=VXlRSmZNQVFnMlRYdTBPZFVrQmswUT09
Meeting ID: 898 5567 7383
Passcode: 90ZjbH
2021-10-28 (Thursday)
mgr Maria Bancerek (IGF FUW)
Optical properties of hyperbolic nanoresonators
2021-10-21 (Thursday)
dr inż. Piotr Hańczyc (Instytut Fizyki Doświadczalnej, Zakład Optyki, FUW)
Metody spektroskopii laserowej w detekcji agregatów białkowych i peptydowych domieszkowanych znacznikami fluorescencyjnymi
Agregacja białek i peptydów związana jest z chorobami neurodegeneracyjnymi takimi jak choroba Alzheimera lub Parkinsona. Nie ma obecnie skutecznych metod leczenie tych chorób. W zapobieganiu ważna jest natomiast wczesna diagnostyka i wykrywanie zmian chorobotwórczych w możliwie wczesnym stadium na poziomie molekularnym. Techniki optyczne i bazujące na spektroskopii laserowej mogą posłużyć jako mało inwazyjne metody, pozwalające na wczesne wykrywania zmian zachodzących w białkach i peptydach chorobogennych. W wystąpieniu przedstawieniowe zostaną znaczniki fluorescencyjne, które to pośrednie pozwalają ustalić strukturę i stadia agregacji białek, oraz wykrywać zmiany za pomocą technik laserowych, w tym wzmocnionej emisji spontanicznej i akcji laserowej.
2021-10-14 (Thursday)
mgr Dominika Świtlik (IGF FUW)
Porous nanocavity
2021-10-07 (Thursday)
dr Anna Pastuszczak (IGF FUW)