Seminarium Optyczne
Towards an artificial muse for new ideas in Physics
[1] Krenn, Pollice, Guo, Aldeghi, Cervera-Lierta, Friederich, Gomes, Häse, Jinich, Nigam, Yao, Aspuru-Guzik, On scientific understanding with artificial intelligence. Nature Reviews Physics 4, 761 (2022).
[2] Krenn, Kottmann, Tischler, Aspuru-Guzik, Conceptual understanding through efficient automated design of quantum optical experiments. Physical Review X 11(3), 031044 (2021).
[3] Ruiz-Gonzalez, Arlt, et al., Digital Discovery of 100 diverse Quantum Experiments with PyTheus, Quantum 7, 1204 (2023).
[4] Krenn, Drori, Adhikari, Digital Discovery of interferometric Gravitational Wave Detectors, in press: Phys. Rev. X (2025), (https://arxiv.org/abs/2312.04258)
[5] Rodríguez, Arlt, Möckl, Krenn, Automated discovery of experimental designs in super-resolution microscopy with XLuminA, Nature Comm. 15, 10658 (2024)
[6] Krenn et al., Forecasting the future of artificial intelligence with machine learning-based link prediction in an exponentially growing knowledge network, Nature Machine Intelligence 5, 1326 (2023)
[7] Gu, Krenn, Interesting Scientific Idea Generation Using Knowledge Graphs and LLMs: Evaluations with 100 Research Group Leaders. arXiv:2405.17044 (2024).