alt FUW
logo UW
other language
webmail
search
menu

Soft Matter and Complex Systems Seminar

sala 1.40, ul. Pasteura 5
2021-04-16 (09:30) Calendar icon
Debasish Das (University of Strathclyde, Glasgow)

Electrohydrodynamics of drops in strong electric fields

Electrohydrodynamics of drops is a classic fluid mechanical problem where deformations and microscale flows are generated by application of an external electric field. In weak fields, electric stresses acting on the drop surface drive quadrupolar flows inside and outside and cause the drop to adopt a steady axisymmetric shape. This phenomenon is best explained by the leaky-dielectric model under the premise that a net surface charge is present at the interface while the bulk fluids are electroneutral. In the case of dielectric drops, increasing the electric field beyond a critical value can cause the drop to start rotating spontaneously and assume a steady tilted shape. This symmetry-breaking phenomenon, called Quincke rotation, arises due to the action of the interfacial electric torque countering the viscous torque on the drop, giving rise to steady rotation in sufficiently strong fields. Here, we present a small-deformation theory for the electrohydrodynamics of dielectric drops for the complete Melcher–Taylor leaky-dielectric model in three dimensions. Our theory is valid in the limits of strong capillary forces and highly viscous drops and is able to capture the transition to Quincke rotation. A coupled set of nonlinear ordinary differential equations for the induced dipole moments and shape functions are derived whose solution matches well with experimental results in the appropriate small-deformation regime. Retention of both the straining and rotational components of the flow in the governing equation for charge transport enables us to perform a linear stability analysis and derive a criterion for the applied electric field strength that must be overcome for the onset of Quincke rotation of a viscous drop.

Articles:
1) D. Das and D. Saintillan, "A three-dimensional small-deformation theory for electrohydrodynamics of dielectric drops" Journal of Fluid Mechanics, 914, A22 (2021).
2) D. Das and D. Saintillan, "A nonlinear small-deformation theory for transient droplet electrohydrodynamics", Journal of Fluid Mechanics 810, 225-253 (2017).
3) D. Das and D. Saintillan, "Electrohydrodynamics of viscous drops in strong electric fields: Numerical simulations", Journal of Fluid Mechanics 829, 127-152 (2017).
4) D. Das and E. Lauga, "Active particles powered by Quincke rotation in a bulk fluid", Physical Review Letters 122, 194503 (2019).


The seminar will be held on Zoom
https://us02web.zoom.us/j/82784273907

Wróć

Wersja desktopowa Stopka redakcyjna