alt FUW
logo UW
other language
webmail
search
menu

Środowiskowe Seminarium z Informacji i Technologii Kwantowych

sala 1.02, ul. Pasteura 5
2024-05-09 (11:15) Calendar icon
David Ziemkiewicz (Politechnika Bydgoska)

Emerging quantum technologies with Rydberg excitons

The recent discovery of Rydberg excitons in Cu2O opened up a completely new field of solid state physics, with many exciting applications. Rydberg atoms are a well-known tool in quantum information science, but their potential applications require high vacuum and sophisticated laser cooling schemes. Rydberg excitons are a solid state counterpart to Rydberg atoms, providing a basis for a plethora of Cu2O-based devices. For example, a superlattice containing a Rydberg exciton [1] is an analog of a Rydberg atom trapped in an optical lattice, which can be a promising tool in quantum computing [2-4]. Moreover, due to the small energy spacing between high exciton states, one can devise a scheme for frequency conversion from optical to microwave range [5], possibly providing an interface to systems such as superconducting qubits operating at these frequencies [6].

References
[1] D. Ziemkiewicz, G. Czajkowski, S. Zielińska-Raczyńska, Optical properties of Rydberg excitons in Cu2O-based superlattices, Phys. Rev. B 109, 085309 (2024)
[2] L. Isenhower, et al, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104, 010503 (2010).
[3] A. Omran, et al, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science 365, 570 (2019).
[4] W. Li, A boost to Rydberg quantum computing, Nat. Phys. 16, 820 (2020).
[5] D. Ziemkiewicz, S. Zielińska-Raczyńska, Optical-to-microwave frequency conversion with Rydberg excitons, Phys. Rev. B 107, 195303 (2023)
[6] N. J. Lambert et al, Coherent conversion between microwave and optical photons - An overview of physical implementations, Adv. Quantum Technol. 3, 1900077 (2020).

Wróć

Wersja desktopowa Stopka redakcyjna