Pamięć kwantowa jako optyczny teleskop czasowy o rekordowej rozdzielczości
2020-03-06
Doktoranci Wydziału Fizyki, pracujący w Centrum Optycznych Technologii Kwantowych (QOT) pod kierunkiem dr. hab. Wojciecha Wasilewskiego, skonstruowali i przetestowali optyczny teleskop czasowy zbierający sygnały przez rekordowo długi okres kilkudziesięciu mikrosekund.
Teleskop czasowy jest szczególnym urządzeniem optycznym, które pozwala na jednoczesny odbiór i analizę wielu blisko leżących zakresów częstotliwości optycznych (kanałów). Skonstruowane urządzenie pozwala rozdzielać sygnały optyczne tak bliskie w częstotliwości jak stacje radiowe UKF FM (0,1MHz). Powstałe w innych grupach na świecie teleskopy czasowe uzyskują dotychczas rozdzielczość milion razy mniejszą i są dostosowane do szerokopasmowych sygnałów emitowanych przez urządzenia optyczne bazujące głównie na ciele stałym. Teleskop opracowany na Uniwersytecie Warszawskim operuje w zupełnie innym reżimie, co sprawia, że może on rejestrować sygnały emitowane przez systemy bazujące np. na gazach atomowych, pojedynczych jonach czy prężnie rozwijających się w ostatnich czasach układach opto-mechanicznych, co dotychczas było niemożliwe. Urządzenie to przekracza także tysiąckrotnie możliwości spektrometrów optycznych, które zazwyczaj nie pozwalają na jednoczesny odbiór więcej niż jednego kanału. Warto zauważyć, że uzyskanie tak dużej rozdzielczości z wykorzystaniem konwencjonalnych metod wymagałoby użycia ok. 10^12 km światłowodu - to około 1/10 roku świetlnego.
Tak doskonałe rezultaty uzyskano odpowiednio programując skonstruowaną przez twórców pamięć kwantową. Praca zaczęła się od analizy zasad działania wspólnych dla wielokanałowego radia i teleskopu optycznego, gdyż oba te urządzenia realizują transformatę Fouriera, chociaż w zupełnie innym zakresie częstotliwości. Wiele powszechnie dostępnych urządzeń pozwala obserwować spektrum muzyczne w trakcie odtwarzania piosenek, gdzie słupki obrazujące siłę poszczególnych zakresów fal akustycznych są obliczane przez komputer przy wykorzystaniu wspomnianej transformaty. Działa ona w obie strony – możemy rozłożyć dźwięk na tony składowe albo złożyć akord z poszczególnych tonów, imitując grę na fortepianie. Wykorzystując transformatę Fouriera muzycy już wiele lat temu nauczyli elektryczny fortepian mówić (vide: https://youtu.be/-6e2c0v4sBM).
Zademonstrowana w urządzeniu metoda uzyskiwania transformaty Fouriera sygnałów optycznych także jest odwracalna. Dzięki temu poszczególne odbierane kanały są zupełnie niezależne, co jest ważne w niektórych protokołach komunikacyjnych korzystających z wielu kanałów jednocześnie. Opracowany, unikalny schemat może zostać zastosowany jako odbiornik w protokołach przesyłania informacji kwantowej, czyli docelowo na przykład w kryptografii kwantowej, gdzie wykorzystanie wielu kanałów podnosi prędkość przesyłu. Innym potencjalnym zastosowaniem jest odbieranie danych z bardzo odległych satelitów nadających sygnały optyczne. Dzięki nadzwyczajnej charakterystyce opisywanego odbiornika, można by go także użyć do praktycznej realizacji niedawno zaproponowanych przez teoretyków nadzwyczaj wyrafinowanych schematów kodowania optycznego, co również mogłoby w sposób znaczący podnieść prędkość odbioru zakodowanej informacji.
Praca powstała w grupie Laboratorium Pamięci Kwantowych przy udziale dwóch doktorantów, magistranta i jednego, niedawno wypromowanego doktora przy wsparciu kierownika laboratorium, na unikalnej w skali świata pamięci kwantowej, skonstruowanej całkowicie na Uniwersytecie Warszawskim. Dodatkowo zespołowi pomagają dwaj studenci elektroniki. Zgodna i wytężona praca całego zespołu obejmowała rozbudowę układu optycznego, precyzyjną weryfikację współdziałania podzespołów w szeregu pomiarów testowych, opracowanie koncepcji nowego eksperymentu poprzez symulacje teoretyczne, dopasowanie parametrów do rzeczywistego eksperymentu, poszukiwanie reżimu, w którym nowy schemat działa jak najlepiej i na końcu ostateczne pomiary i wykreślenie otrzymanych wyników w syntetycznej formie, odpowiadającej modelom teoretycznych. Opracowany schemat nie jest podobny do żadnego znanego wcześniej, dzięki czemu wszyscy członkowie zespołu musieli wykazać się dużą kreatywnością, co pozwoliło na nabranie unikalnego, szerokiego doświadczenia w optyce kwantowej, elektronice, programowaniu i szeregu innych zagadnień.
Fizyka i astronomia na Uniwersytecie Warszawskim pojawiły się w 1816 roku w ramach ówczesnego Wydziału Filozofii. W roku 1825 powstało Obserwatorium Astronomiczne. Obecnie w skład Wydziału Fizyki UW wchodzą Instytuty: Fizyki Doświadczalnej, Fizyki Teoretycznej, Geofizyki, Katedra Metod Matematycznych oraz Obserwatorium Astronomiczne. Badania pokrywają niemal wszystkie dziedziny współczesnej fizyki, w skalach od kwantowej do kosmologicznej. Kadra naukowo-dydaktyczna Wydziału składa się z ponad 200 nauczycieli akademickich, wśród których jest 78 pracowników z tytułem profesora. Na Wydziale Fizyki UW studiuje ok. 1000 studentów i ponad 170 doktorantów.
PUBLIKACJE NAUKOWE:
Mateusz Mazelanik, Adam Leszczyński, Michał Lipka, Michał Parniak, Wojciech Wasilewski, Temporal imaging for ultra-narrowband few-photon states of light. Optica Vol. 7, Issue 3, pp. 203-208 (2020)
https://doi.org/10.1364/OPTICA.382891
KONTAKTY:
mgr Mateusz Mazelanik
Wydział Fizyki Uniwersytetu Warszawskiego
Centrum Kwantowych Technologii Optycznych, Centrum Nowych Technologii Uniwersytetu Warszawskiego
tel. +48 22 55 32 631
email: mateusz.mazelanik@fuw.edu.pl, m.mazelanik@cent.uw.edu.pl
mgr Adam Leszczyński
Wydział Fizyki Uniwersytetu Warszawskiego
Centrum Kwantowych Technologii Optycznych, Centrum Nowych Technologii Uniwersytetu Warszawskiego
tel. +48 22 55 32 630
email: a.leszczynski@cent.uw.edu.pl
dr hab. Wojciech Wasilewski
Wydział Fizyki Uniwersytetu Warszawskiego
Centrum Kwantowych Technologii Optycznych, Centrum Nowych Technologii Uniwersytetu Warszawskiego
tel. +48 22 55 32 630
email: w.wasilewski@cent.uw.edu.pl
POWIĄZANE STRONY WWW:
http://www.fuw.edu.pl
Strona Wydziału Fizyki Uniwersytetu Warszawskiego.
http://psi.fuw.edu.pl/
Strona Laboratorium Pamięci Kwantowych Wydziału Fizyki Uniwersytetu Warszawskiego.
http://qot.cent.uw.edu.pl/
Strona Centrum Kwantowych Technologii Optycznych.
http://www.fuw.edu.pl/informacje-prasowe.html
Serwis prasowy Wydziału Fizyki Uniwersytetu Warszawskiego.
MATERIAŁY GRAFICZNE:
FUW200306b_fot01
HR: https://www.fuw.edu.pl/tl_files/press/images/2020/FUW200306b_fot01.jpg
Zdjęcie chmury atomów rubidu-87 stanowiącej najważniejszy element pamięci kwantowej użytej do demonstracji teleskopu czasowego o rekordowej rozdzielczości. Wstawka przedstawia przykładowy wynik eksperymentu z dwoma krótkimi impulsami na wejściu teleskopu (lewa część), których transformatą Fouriera jest grzebień widoczny na wyjściu (prawa część). (Źródło: Wydział Fizyki UW, fot. Mateusz Mazelanik)