alt FUW
logo UW
other language
webmail
search
menu
Wydział Fizyki UW > Badania > Seminaria i konwersatoria > Środowiskowe Seminarium z Informacji i Technologii Kwantowych

Środowiskowe Seminarium z Informacji i Technologii Kwantowych

2012/2013 | 2013/2014 | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 | 2019/2020 | 2020/2021 | 2021/2022 | 2022/2023 | 2023/2024 | 2024/2025 | kanał YouTube

do roku 2023/2024 Seminarium Kwantowa Informacja | kanał YouTube

RSS

2017-11-30 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Krzysztof Pawłowski (CFT PAN)

Quantum Trajectories Method step by step

2017-11-23 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Paolo Giorda (University of Pavia)

Coherence in quantum estimation

2017-11-16 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Mateusz Mazelanik (IFD UW)

High-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory

2017-10-26 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Tomasz Wasak (IFT UW)

Ultracold collisions in the atom-atom and atom-ion systems and their application for magnetic field sensing

2017-10-19 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Anita Dąbrowska (UMK Toruń)

Quantum trajectories for a system interacting with environment in a single photon state: counting and diffusive processes

2017-10-12 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Michał Oszmaniec (Uniwersytet Gdański)

Classical simulation of boson sampling with lost photons

2017-10-05 (Czwartek)
Zapraszamy do sali 1.03, ul. Pasteura 5 o godzinie 11:15  Calendar icon
Alexander Streltsov (Uniwersytet Gdański)

Entanglement and coherence in quantum state merging

Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum, and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Wersja desktopowa Stopka redakcyjna