alt FUW
logo UW
other language
webmail
search
menu
2012-03-08 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
mgr Agata Cygan (UMK Toruń)

Precyzja i dokładność w spektroskopii

2012-03-01 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
prof. Marcin Molski (UAM Poznań)

Living systems as coherent anharmonic oscillators

Abstract. A model of living systems considered as coherent, time-dependentanharmonic oscillators is presented. It is based on the concept ofspace-like coherent states minimizing the time-energy uncertaintyrelation, adapted to the case of biological systems whose growth isdescribed by the Gompertz or West-Brown-Enquist functions. The coherentstates of biological growth evolve coherently in space being localizedalong the classical time trajectory; hence, the growth is predicted to becoherent in space. It is proven that the Gompertz function is a specialsolution of the space-like Horodecki-Feinberg equation for thetime-dependent Morse oscillator in the dissociation state. Its eigenvaluerepresents the momentum of biological growth, associated with a space-likecomponent whose properties resemble those attributed by vitalists to thelife momentum or vital impulse. The physical characteristics of the lifeenergy and momentum and their connection with the concept of zero-pointmomentum of vacuum are presented.
2012-02-16 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
dr Livio Gianfrani (Uniwersytet w Neapolu)

Spectroscopic determination of the Boltzmann constant

2012-01-19 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
mgr Emilia Baszanowska (Uniwersytet Gdański)

Wzbudzanie atomow He poprzez zderzenia z atomami i jonami He o energiach 10-30 keV

2012-01-12 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
mgr Iwona Cieślik, mgr Rafał Węgłowski (WAT)

Technologia otrzymywania kompozytów ciekłokrystalicznych typu PDLC domieszkowanych nanocząstkami nieorganicznymi

2012-01-05 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
mgr Przemysław Bienias (Centrum Fizyki Teoretycznej PAN)

Kwazikondensacja versus kondensacja

2011-12-15 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
dr Piotr Fita (IFD UW)

Dynamika atomów wodoru w asymetrycznej, podwójnej studni potencjału

2011-12-08 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
prof. Peter Zoller (Institute for Theoretical Physics, University of Innsbruck)

Open System Quantum Simulations

2011-11-24 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
Prof. Chandrasekhar Roychoudhuri (University of Connecticut)

The impacts in optical sciences in view of the NIW-principle (Non-Interaction of Waves)

The autocorrelation, or the Wiener-Khintchine, theorem plays a pivotal role in optical coherence theory. The proof of the theorem derives from the time-frequency Fourier theorem. The derivation requires either dropping the cross-products (interference terms) between the different field amplitudes corresponding to different frequencies, or taking a time integration over the entire duration of the signal [1]. The physical interpretation of these mathematical steps implies, either (i) non-interference (non-interaction) between different frequencies, or (ii) the registered data is valid for interpretation when the detector is set for long time integration. We have already proposed [2] the generic principle of Non-Interaction Waves (NIW), or the absence of interference between light beams irrespective of their phases, frequencies or polarizations. In the linear domain, the waves do not exert any force of interaction between themselves. So they cannot exchange energy or induce energy distribution between themselves, which usually is a quadratic process. All the complex amplitudes continue to propagate through each other unperturbed, following the Huygens-Fresnel diffraction integral, without modifying each other’s energy distribution. Observed energy re-distribution can take place only in the presence of some interacting material medium.

The hypothesis of non-interaction between different frequencies was used by Michelson to frame the theory behind his Fourier Transform Spectroscopy, which is correct only when the detector possesses a long integrating time constant like a human eye, a photographic plate, or a photo detector circuit with a long LCR time constant. We now know that a fast detector gives heterodyne signal (light beating spectroscopy). So, the correlation factor derived by the prevailing coherence theory, and measured through fringe visibility, is essentially the quantum property of the detecting molecules compounded by the response time of the follow-on instrumentation. Low visibility fringes (low correlation factor) do not imply that the intrinsic property of light is partially coherent. The fringes correspond to a joint light-matter response characteristic. So, we re-define coherence by directly referring to the key characteristics of light beams, which are responsible for reducing the visibility of fringes registered by our detecting instruments. These are: (i) spectral correlation (presence of multi frequency), (ii) temporal correlation (time varying amplitude of light), (iii) spatial correlation (independent multi-point source), and (iv) complex correlation (mixture of previous characteristics).

[1] C. Roychoudhuri, “Re-interpreting coherence in light of Non-Interaction of Waves, or the NIW-Principle”; SPIE Conf. Proc. Vol.8121-44 (2011).

[2] C. Roychoudhuri, “Principle of non-interaction of waves”, doi:10.1117/1.3467504; J. Nanophotonics, Vol.4, 043512 (2010).

2011-11-17 (Czwartek)
Zapraszamy do Sali Seminaryjnej Doświadczalnej, ul. Hoża 69 o godzinie 09:15  Calendar icon
mgr Radosław Chrapkiewicz (IFD UW)

Generowanie i odczyt kolektywnych wzbudzeń w parach rubidu

Wersja desktopowa Stopka redakcyjna