The Algebra & Geometry of Modern Physics
2013/2014 | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 | Strona własna seminarium
2018-03-08 (Czwartek)
Mariusz Tobolski (IMPAN)
Interacting fields and Feynman diagrams, part II
Interacting fields and Feynman diagrams, part II
2018-03-01 (Czwartek)
Mariusz Tobolski (IMPAN)
Interacting fields and Feynman diagrams, part I
Interacting fields and Feynman diagrams, part I.
2018-01-25 (Czwartek)
Robert Śmiech (MIMUW)
Quantum field theory: free fields, part III
Quantum field theory: free fields, part III
2018-01-18 (Czwartek)
Robert Śmiech (MIMUW)
Quantum field theory: free fields, part II
Quantum field theory: free fields, part II
2018-01-11 (Czwartek)
Robert Śmiech (MIMUW)
Quantum field theory: free fields, part I
Quantum field theory:free fields
2017-12-21 (Czwartek)
Krzysztof Jodłowski (FUW)
Feynman approach to Quantum Mechanics and Simple Harmonic Oscilator, part III
I will introduce Feynman path integral approach to Quantum Mechanics, focusing on a few simple examples: free particle, a particle coupled to magnetic field, and a general lagrangian quadratic in positions and velocities. Feynman heuristic idea will be presented as well as rigorous (but with imaginary time evolution) approach using Feynman-Kac formula. A partition function for the Simple Harmonic Oscilator will be computed using the path integral.
2017-12-14 (Czwartek)
Krzysztof Jodłowski (FUW)
Feynman approach to Quantum Mechanics and Simple Harmonic Oscilator, part II
I will introduce Feynman path integral approach to Quantum Mechanics, focusing on a few simple examples: free particle, a particle coupled to magnetic field, and a general lagrangian quadratic in positions and velocities. Feynman heuristic idea will be presented as well as rigorous (but with imaginary time evolution) approach using Feynman-Kac formula. A partition function for the Simple Harmonic Oscilator will be computed using the path integral.
2017-12-07 (Czwartek)
Krzysztof Jodłowski (FUW)
Feynman approach to Quantum Mechanics and Simple Harmonic Oscilator, part I
I will introduce Feynman path integral approach to Quantum Mechanics, focusing on a few simple examples: free particle, a particle coupled to magnetic field, and a general lagrangian quadratic in positions and velocities. Feynman heuristic idea will be presented as well as rigorous (but with imaginary time evolution) approach using Feynman-Kac formula. A partition function for the Simple Harmonic Oscilator will be computed using the path integral.
2017-11-30 (Czwartek)
T. Pelka (MIMUW)
Quantum mechanics
Quantum mechanics
2017-11-16 (Czwartek)