The Algebra & Geometry of Modern Physics
2013/2014 | 2014/2015 | 2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 | Strona własna seminarium
2014-06-05 (Czwartek)
Piotr Kucharski (IFT WFUW)
Bundles and Aharonov-Bohm effect
The Aharonov-Bohm effect provides a very nice example of a phenomenon that can be seen either from the mathematical and physical point of view. In this seminar I will present both perspectives: vector bundles and gauge theory and show how they are related to each other.
2014-05-29 (Czwartek)
Piotr Hajac (IMPAN)
The joy of principal bundles
The joy of principal bundles
2014-05-15 (Czwartek)
Piotr Sułkowski (IFT UW)
Instantons revisited
This lecture is an introduction to physics and mathematics of instantons. We will review construction of instantons (BPST solution, ADHM construction), properties of their moduli spaces, and discuss some of their applications.
2014-05-08 (Czwartek)
Elizabeth Gasparim (Unicamp, Campinas, Brasil)
The counting of instantons and BPS states
I will review classical results about existence of instantons on curved 4 manifolds, then describe their counting via Nekrasov partition function. Next I will explain a trick we made up make partition functions for singular varieties, which I will apply for both instanton and BPS state counting.
2014-04-10 (Czwartek)
Rafał R. Suszek
Principal bundles, equivariant descent & the gauge principle, II
In a series of lectures, the applicability of the structure of a principal bundle with connection in the context of field theory will be demonstrated. First, the definition of a principal bundle with a structural groupoid and a compatible connection will be presented, with view to establishing a natural description of field theories with some of their global symmetries rendered local (or "gauged"). The concept of equivariant descent of a geometric object (such as, e.g., a tensor, a bundle or a higher structure) will be introduced and illustrated through the example of an equivariant bundle over a base acted upon by a group. Finally, a general gauge principle will be formulated for field theories defined in terms of lagrangean densities, and subsequently concretised in the physically interesting setting of the dynamics of topologically charged objects in external fields. This will, in particular, lead us to an algebroidal and cohomological classification of obstructions to the gauging, aka gauge anomalies.
2014-04-03 (Czwartek)
Rafał R. Suszek
Principal bundles, equivariant descent & the gauge principle, I
In a series of lectures, the applicability of the structure of a principal bundle with connection in the context of field theory will be demonstrated. First, the definition of a principal bundle with a structural groupoid and a compatible connection will be presented, with view to establishing a natural description of field theories with some of their global symmetries rendered local (or "gauged"). The concept of equivariant descent of a geometric object (such as, e.g., a tensor, a bundle or a higher structure) will be introduced and illustrated through the example of an equivariant bundle over a base acted upon by a group. Finally, a general gauge principle will be formulated for field theories defined in terms of lagrangean densities, and subsequently concretised in the physically interesting setting of the dynamics of topologically charged objects in external fields. This will, in particular, lead us to an algebroidal and cohomological classification of obstructions to the gauging, aka gauge anomalies.
2014-03-20 (Czwartek)
Paweł Urbański (KMMF FUW)
Connections in the sense of Ehresmann, part II
Powiązanie w sensie Ehresmanna na wiązce włóknistej jest dystrybucją (horyzontalną) dopełniającą dystrybucję wektorów pionowych. Przedyskutuję różne sposoby reprezentacji tej dystrybucji oraz podstawowych konstrukcji z nią związanych (podniesienie horyzontalne, pochodna kowariantna, krzywizna). Następnie omówię koneksje zgodne z zastaną strukturą rozwłóknienia (wiązki wektorowej, wiązki wektorowej z metryką, wiązki stycznej i kostycznej, wiązki głównej).
2014-03-13 (Czwartek)
Paweł Urbański (KMMF FUW)
Connections in the sense of Ehresmann
Powiązanie w sensie Ehresmanna na wiązce włóknistej jest dystrybucją (horyzontalną) dopełniającą dystrybucję wektorów pionowych. Przedyskutuję różne sposoby reprezentacji tej dystrybucji oraz podstawowych konstrukcji z nią związanych (podniesienie horyzontalne, pochodna kowariantna, krzywizna). Następnie omówię koneksje zgodne z zastaną strukturą rozwłóknienia (wiązki wektorowej, wiązki wektorowej z metryką, wiązki stycznej i kostycznej, wiązki głównej).
2014-03-06 (Czwartek)
Karol Palka (IMPAN)
Quick introduction to fibre bundles, part II
We will discuss basic notions and properties of fibre bundles and their maps, including principal and associated bundles. We will recall classical constructions and some interesting examples.
2014-02-27 (Czwartek)
Karol Palka (IMPAN)
Quick introduction to fibre bundles
We will discuss basic notions and properties of fibre bundles and their maps, including principal and associated bundles. We will recall classical constructions and some interesting examples.
Stron 1 z 3