alt FUW
logo UW
other language
webmail
search
menu
Wydział Fizyki UW > Badania > Seminaria i konwersatoria > Konwersatorium im. Leopolda Infelda (do roku 2017/18)
2011-06-06 (Poniedziałek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 16:30  Calendar icon
prof. dr hab. Andrzej Kajetan Wroblewski (Wydział Fizyki UW)

Wielkość Marii Skłodowskiej-Curie

Zostaną omówione początkowe lata badań promieniotwórczości. Becquerel odkrył to zjawisko przypadkiem w 1896 r., ale popełnił kilkaistotnych błędów w interpretacji swych eksperymentów, co spowodowało, że promieniowanie uranu uznano za mało ciekawe i przestano się tym zajmować. Także sam Becquerel zajął się innym działem fizyki i być może nie dostałby Nagrody Nobla, gdyby nie przełomowe badania i odkrycia Marii Skłodowskiej-Curie, która ponownie odkryła promieniotwórczość i zapoczątkowała burzliwy rozwój tej dziedziny, z której wkrótce wyrosła fizyka jądrowa. Maria Skłodowska-Curie widziała to, czego nie dostrzegali nieliczni badacze, którzy równocześnie prowadzili analogiczne badania w 1898 r. Zostaną też podane przykłady mitów na temat Marii Skłodowskiej-Curie.
2011-05-26 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Prof. Cheuk-Yin Wong (Oak Ridge National Laboratory)

Stability of Matter-Antimatter Molecules

The study of matter-antimatter molecules has a long history, starting with the pioneering work of John A. Wheeler in 1946. Molecular states appears not only in atomic and molecular physics, but also in sub-atomic physics. We shall review the evidence for molecular states in subatomic systems and discuss the recently observed X(3872) as a heavy-quark meson molecule [1]. Because a large number of particles and antiparticles are produced in high-energy (e+)-(e-) annihilations and nuclear collisions, we examine further the stability of matter-antimatter molecules with constituents (m1+, m2-, m2bar+, m1bar-) under their mutual electromagnetic interactions [2]. We find that matter-antimatter molecules possess bound states if their constituent mass ratio m1/m2 is greater than about 4. This stability condition suggests that the binding of matter-antimatter molecules is a rather common phenomenon.

[1] Cheuk-Yin Wong, Phys. Rev. C69, 055202 (2004) [arXiv:hep-ph/0311088].
[2] Cheuk-Yin Wong and Teck-Ghee Lee, [arXiv:1103.5774] (2011).

2011-05-19 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Prof. dr hab. Włodzimierz Jaskólski (Instytut Fizyki Uniwersytetu Mikołaja Kopernika, Toruń)

Finding edge-states of graphene nanoribbons without any calculations

I will present a general prescription, which allows to predict, without performing any calculations, the existence of edge states and zero-energy flat bands in graphene nanoribbons (GNR) with edges of arbitrary shape. First, one need to define the so-called minimal edges, i.e., those having minimum number of edge nodes and dangling bonds per translation period. For GNRs with such edges, the spectrum of the zero-energy edge bands is obtained by folding n-times the spectrum of the simple zigzag GNR, where n is uniquely determined by the projection of the edge translation vector into the zigzag direction. By adding extra nodes to minimal edges, arbitrary modified edges can be obtained. The edge bands of GNRs with modified edges can be found by applying hybridization rules of the extra atoms with the ones belonging to the original edge. The entire prescription reduces to simple diagrams, which additionally predict the localization and degeneracy of the zero-energy bands at one of the graphene sublattices. This is confirmed by the tight-binding and first-principle calculations. The presented rules also allows us to qualitatively predict the existence of E0 bands appearing in the energy gap of certain nanoribbons.
2011-05-05 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Dr. Angel Alastuey (Laboratoire de Physique, ENS Lyon)

Exact results for the hydrogen plasma within path integral methods

The derivation of exact results for quantum Coulomb gases has to face several difficulties originating from screening and recombination of charges into atoms, ions and molecules. The path integral representation at finite temperature is the most suitable tool for a proper account of those phenomena in partially ionized gases. It leads to the introductionof an equivalent classical system made of loops with arbitrary shapesdistributed according to Wiener measure. The equilibrium quantities of thegenuine quantum gas are then formally represented by Mayer-likediagrammatical series for that system of loops. The path integraldescription in terms of loops allows us to perform systematic resummations of Coulomb chains which remove long range divergences, as well as reexponentiations which incorporate recombination at short distances. Such operations can be carried out within well-prescribed topological and combinatorial rules, thanks to the classical nature of Gibbs factors in the loop world. Mayer-like series are then exactly transformed into the so-called screened cluster representation, where graphs are now built with particle clusters and screened interactions.

Within the screened cluster representation, we derive exact expressions for both thermodynamics and correlations of a partially ionized hydrogen gas in the Saha regime, defined by a double zero-temperature and zero-density limit. Such expressions properly account for contributions of molecular or ionic species, without any adjustable parameters like in phenomenological approaches. Moreover, they shed light on the partial screening of van der Waals forces by free charges, and its relation with the algebraic nature of screening in quantum plasmas.

2011-03-31 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
dr hab. Piotr Flin, prof. UJK (Wydział Matematyczno-Przyrodniczy Uniwersytetu Jana Kochanowskiego, Kielce)

Ludwik Silberstein (1872-1948); życie i twórczość

Przedstawione będzie życie Silbersteina od czasów szkolnych do ukończenia studiów, jak też niektóre elementy życia prywatnego. Krótko omówię główne kierunki działalności naukowej i dydaktycznej. Pokuszę się o próbę oceny jego osiągnięć i wpływu na rozwój fizyki.
2011-03-17 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Prof. dr hab. Krzysztof M. Gorski (Jet Propulsion Laboratory of the California Institute of Technology, Pasadena, CA and Warsaw University Observatory)

Satellite Mission Planck: Description, Scientific Goals, and Early Results

Since August 2009 Planck has been observing the sky at frequencies from 30 to 857 GHz, measuring its principal target - the cosmic microwave background, but also everything else in the universe that radiates at these frequencies. I will describe the design and scientific goals of the mission, and the first scientific results from Planck, presented in Jan. 2011, covering a wide range of galactic and extragalactic astrophysics.
2011-03-03 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
prof. dr hab. Tomasz Dietl (Laboratory of Cryogenic and Spintronic Research, Institute of Physics, Polish Academy of Sciences; Institute of Theoretical Physics Faculty of Physics University of Warsaw)

Understanding the origin of ferromagnetism in semiconductors

To memory of Jan Gaj (1943-2011)

In course of the years, the origin of spontaneous magnetisation that has been observed in numerous semiconductors and oxides has arguably become one of the most controversial topics in the contemporary physics of condensed matter. After a general introduction to spintronics and magnetically doped semiconductors, I will argue [1] that surprising properties of these systems have two distinct roots (i) an intricate interplay between hole-mediated ferromagnetism and AndersonMott localisation and (ii) a highly non-random distribution of magnetic cations driven by a significant contribution of open d shells to the cohesive energy.

[1] see, T. Dietl, Nature Mat. 9, 965 (2010), and references therein.

2011-01-20 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Prof. Dr. W. Hofstetter (Goethe-Universität Frankfurt)

Magnetic and color superfluid order in multiflavor Fermi gases

Cold atoms in optical lattices offer a new laboratory for quantum many-body phenomena. One of their main advantages is the high tunabilityof interactions and quantum statistics. In this colloquium I will focus on current developments in multiflavor Fermi gases:
i) We investigate antiferromagnetic ordering of trapped spin-1/2 fermions using large-scale dynamical mean-field theory simulations. We find a clear experimental signature - enhanced double occupancy - for the onset of magnetic order at low temperatures in current experiments.
ii) We study the properties of three-flavor fermions in an optical lattice, where new exotic quantum states such as color superfluids arise in partial analogy to Quantum Chromodynamics. Low-temperature properties of this system are addressed using DMRG and dynamical mean-field theory. Wefind a strong interplay between magnetization and color superfluidity.
2010-12-16 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Dr. Randolf Pohl (Ludwig-Maximilians-Universität, Munich;Max-Planck-Institute of Quantum Optics, Garching)

The size of the proton

The charge radius Rp of the proton has so far been known only with a surprisingly low precision of about 1% from both electron scattering and precision spectroscopy of hydrogen.

We have recently determined Rp by means of laser spectroscopy of the exotic "muonic hydrogen" atom. Here, the muon, which is the 200 times heavier cousin of the electron, orbits the proton with a 200 times smaller Bohr radius. This enhances the sensitivity to the proton's finite size tremendously.

Our new value Rp = 0.84184 (67) fm is ten times more precise than the generally accepted CODATA value, but it differs by 5 standard deviations from it. A lively discussion about possible solutions to the "proton size puzzle" has started.

2010-11-25 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Prof. Dr. Dagmar Bruss (Institut fuer Theoretische Physik III Heinrich-Heine-Universitaet Duesseldorf)

Quantum entanglement: analysis and detection

Entanglement is one of the most fascinating features of quantum mechanics, and enables various protocols in quantum information processing. The aim of this talk is to give an overview of methods for the theoretical analysis of entanglement, and to provide a link to the detection of entanglement in the laboratory. Special emphasis will be given to the method of witness operators. In the context of measuring witness operators, a connection between entanglement and diffractive properties of periodic spin systems will be pointed out.
2010-11-18 (Czwartek)
Zapraszamy do Sali Dużej Doświadczalnej, ul. Hoża 69 o godzinie 16:30  Calendar icon
Prof. Kenneth G. Wilson

Additional Sources for Physics Research Funding in the Future?

Additional future funding for physics research might come from two different sources. One source, not yet visible, could be research grants from the private sector provided for a subgroup of physicists. These physicists would have already been recruited to participate in a future decades-long career development ladder for increasingly highly paid future top organizational executives. These physicists would (presumably) have already agreed to complete a first career in physics and then launch a second career as an aspiring top executive leader nationally or internationally. They might be selected for recruitment to such second careers based on their already demonstrated leadership skills in sizeable physics research projects (engaging perhaps ten or more physicists). They could then be helped to interpret and learn from their continuing experience as a leader in such projects for a number of years prior to making their switch to their second career. The amount of funding provided through such research grants as part of their incentive to agree to make aswitch to a second career could be quite substantial. The amount of such funding could grow with time as the need for exceedingly capable executive leaders, already acute and largely unmet as of 2010, continues to grow. I know from private conversations that a first career in physics can provide an invaluable background in creative thinking, problem solving, and pushing for unceasing innovation by a person who later joins a career ladder headed for top executive leadership positions. Another source, already non-trivial in magnitude but likely to increase in the future, will be discussed far more briefly. It is the need to ensure ever-increasing reliability, through increasingly careful testing, of the underlying physical laws governing physics-based instrumentation used in multi-billion-dollar and increasingly costly applications in medicine, aviation, chemical engineering, astronomy and space research, and the like.
2010-11-04 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
prof. Krzysztof Meissner (IFT UW, IPJ)

Axions as Dark Matter

I will discuss theoretical motivations for the existence of axions and bounds on their masses and interactions coming from astrophysics andcosmology. I will describe arguments to propose axions as natural ColdDark Matter candidates. I will present existing experiments searching foraxions and in particular experiment OSQAR at CERN. On the theory sideslightly enlarged Standard Model with conformal symmetry naturallyincludes axions as (pseudo)Goldstone bosons of spontaneously broken lepton number symmetry with very small couplings correlated with small neutrino masses.
2010-10-21 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Prof. Jacek A. Majewski (IFT UW)

Graphene future of nanoelectronics?

Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, has attracted a lot of attention since its discovery in 2004. The material with the whole plethora of intriguing properties has been billed as wonder material that could one day determine the future nano-electronics, just replacing the silicon in processors. Actually, a 100 GHz field effect transistor based on graphene sheet has been announced recently.

In this lecture, we present a survey of the graphene properties that lead to intriguing physics (resembling relativistic physics) and make this material so promising candidate for future information technologies. We address the challenges of creating electronic devices built of graphene. We consider electronic structure of monolayer graphene flakes, multilayers of graphene obtained in epitaxial growth process, and recently obtained graphane (i.e., modification of graphene sheet covered with hydrogen atoms), which also is intensively studied.

2010-10-07 (Czwartek)
Zapraszamy do Nowej Auli (425), ul. Hoża 69 o godzinie 15:30  Calendar icon
Dr Carsten Müller (Max-Planck-Institut für Kernphysik, Heidelberg, Germany)

Lepton pair creation in intense laser fields

The creation of particle-antiparticle pairs by multiphoton absorption from intense laser fields in various configurations is discussed.Electron-positron pair creation by high-energy proton impact on a strong laser beam is considered first, including spin and recoil effects. Acomparison is drawn with pair creation in relativistic electron-laser collisions. The creation of muon-antimuon pairs is also addressed.Finally, we consider electron-positron pair creation in a standing electromagnetic wave formed by two counter-propagating laser beams.
2010-10-04 (Poniedziałek)
Zapraszamy do Sali Dużej Doświadczalnej, ul. Hoża 69 o godzinie 16:30  Calendar icon
prof. dr hab. Bogdan Mielnik (IFT UW oraz Departamento de Fisica, Cinvestav, Mexico)

Podstawy mechaniki kwantowej: prawdy, półprawdy, pytania

Współczesne teorie kwantowe zrodziły się w toku trudnych polemik i nawracających wątpliwości. Czy warto zachować je w pamięci? Mój mini-wykład będzie przeglądem niektórych pytań, na które odpowiedź znamy, innych, które pozostały otwarte, innych jeszcze, których wolimy nie zadawać.

  • Dlaczego wierzymy w istnienie kwantów energii? Czy ich teoria musi być indeterministyczna?
  • Czy funkcja falowa opisuje pojedyncza cząstkę? Czy redukcja pakietu falowego jest prawdą, czy fikcją?
  • Czy ma miejsce zjawisko teleportacji w doświadczeniach typu Einstein-Podolsky-Rosen?
  • Czy pojedynczy foton może wykryć bombę w odległości tysiąca km?
  • Czy nasze drzewo wiadomości dobrego i złego jest obiektywne?
Wersja desktopowa Stopka redakcyjna